A Dirichlet problem for the complex Monge-Ampíre operator in F(f)

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Dirichlet Problem for Complex Monge-ampère Equations and Applications

We are concerned with the Dirichlet problem for complex MongeAmpère equations and their applications in complex geometry and analysis. 2000 Mathematical Subject Classification: 35J65, 35J70, 53C21, 58J10, 58J32, 32W20, 32U05, 32U35, 32Q15.

متن کامل

The Dirichlet Problem for Degenerate Complex Monge-ampere Equations

The Dirichlet problem for a Monge-Ampère equation corresponding to a nonnegative, possible degenerate cohomology class on a Kähler manifold with boundary is studied. C1,α estimates away from a divisor are obtained, by combining techniques of Blocki, Tsuji, Yau, and pluripotential theory. In particular, C1,α geodesic rays in the space of Kähler potentials are constructed for each test configurat...

متن کامل

The Dirichlet Problem for Complex Monge-ampère Equations and Regularity of the Pluri-complex Green Function

(1.1) det(uzj z̄k) = ψ(z, u,∇u) in Ω, u = φ on ∂Ω and related questions. When Ω is a strongly pseudoconvex domain, this problem has received extensive study. In [4]-[6], E. Bedford and B. A. Taylor established the existence, uniqueness and global Lipschitz regularity of generalized pluri-subharmonic solutions. S.-Y. Cheng and S.-T. Yau [8], in their work on complete Kähler-Einstein metrics on no...

متن کامل

Continuity of the Complex Monge-Ampère Operator

Let Ω be an open subset in C. PSH(Ω) will stand for the set of all plurisubharmonic (psh) functions on Ω. We use the standard notations d = ∂ + ∂ and d = i (∂ − ∂). The complex Monge-Ampère operator (dd) is, via integrations by parts, well defined on PSH(Ω) ∩ Lloc(Ω) and is continuous under monotone limits, that is, (dd uj) n → (ddu) in the sense of currents if the monotone sequence of function...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Michigan Mathematical Journal

سال: 2007

ISSN: 0026-2285

DOI: 10.1307/mmj/1177681988